重新探讨Salamanca-Riba与Vogan的一个猜想-黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女
  • 黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

    重新探讨Salamanca-Riba与Vogan的一个猜想

    2022.09.02

    投稿:龚惠英部门:理学院浏览次数:

    活动信息

    时间: 2022年09月15日 14:00

    地点: 腾讯会议

    报告题目 (Title):Revisiting a conjecture of Salamanca-Riba and Vogan (重新探讨Salamanca-Riba与Vogan的一个猜想)

    报告人 (Speaker):黄家裕 助理教授 (香港中文大学(深圳))

    报告时间 (Time):2022年09月15日(周四) 14:00-15:00

    报告地点 (Place):腾讯会议 (会议 ID:438-108-860)

    邀请人(Inviter):何海安

    主办部门:理学院数学系

    报告摘要:One major unsolved problem in real reductive Lie groups is the classification of the unitary dual. In their 1998 Annals paper, Salamanca-Riba and Vogan proposed that one can reduce the classification problem to Hermitian representations $\pi$ with unitarily small lowest K-types. Their reduction relies on a(n unproved) non-unitarity conjecture involving the infinitesimal character of $\pi$.

    In this talk, we propose a sharper non-unitarity conjecture, which immediately implies the conjecture of Salamanca-Riba and Vogan. We will sketch a proof of the refined conjecture for $GL(n,C)$. One expects that similar techniques can be applied to other groups.

    黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女